Manure Handling and Storage Effects on Nitrogen Losses of Dairy Farms

Vinicius R. Moreira

Overview

- ✓ Brief identification of the problem;
- ✓ Processes involved in ammonia volatilization;
- ✓ Methods for estimating nitrogen losses;
- ✓ Sources of ammonia volatilization;
- ✓ Summary.

Introduction

- Enhanced Integrated Nutrient Management on Dairy Farms

Why has nitrogen management become an issue?

Jim Galloway s N cascade

Effects of excessive ammonia in the atmosphere

¥ Effects to human and animal health:

Ammonia levels	Health effects
—5ppm	Olfactory detection
20-25ppm	Eye irritation
—~ 1,500ppm	Cough and froth at the mouth
— 5,000ppm	Deadly

ISU Extension publication #: Pm-1518k

Effects of excessive ammonia in the atmosphere

¥ Effects to human and animal health:

- Reacts with sulfur dioxide (SO_2) and nitrogen oxides $(N_xO) \rightarrow$ Aerosols.
 - * Clean Air Act enforces PM10;
- Odor problems.

Effects of excessive ammonia in the atmosphere

¥ Effects on environment:

- —50% of NH₃ is deposited within a 50-km (31 miles) range;
- —Farther deposition is halved every 400 km (250 miles).
 - ¥ Reduces visibility (haze);
 - * Reduction of biodiversity: affect natural ecosystems through N enrichment and allow shift from native oligotrophic plant communities to competitive grass species;
 - ¥ Acid rain;
 - ¥ Eutrophication (nitrate): Gulf of Mexico Hypoxia Zone (Burkart and James, 1999).

Where does ammonia come from in dairy farms?

Factors affecting N efficiency in a dairy cow:

- ¥ N efficiency (kg milk N / kg feed N)
 - —Maximum theoretical: = \sim .44 (NRC, 2001);
 - _56 experiments: .26 (range: .17-.39);
 - —Grazing N fertilized pastures: .16 (Vuuren and Meijs, 1987).
- * Reducing dietary N → increase efficiency (and risk?).

Factors affecting N efficiency in a dairy cow:

	kg/d	lb/d
DMI	24.5	54.0
Diet CP, %	17.5	
N intake	0.686	1.51
Milk yield	37	81.5
Milk CP, %	3.10	
Milk N	0.180	0.396
N retention	0.034	0.076
Excreted N*	0.472	1.039
% excreted	68.8	

^{*} Excreted N = urinary N + fecal N

N distribution in dairy manure

¥ Fecal N:

- —Undigested feed;
- —Microbial proteins;
- —Metabolic losses.

¥ Urinary N:

- —Urea (50-90%);
- —Allantoin;
- —Uric acid;
- —Creatinine;
- —Creatine;
- —Hippuric acid;
- —Xanthine, Hypoxanthine, free ammonia, free amino acids

Urea breakdown

$$CO(NH_2)_2 + H_2O \xrightarrow{urease} 2NH_3 + CO_2$$

* Complete within 2-6h at T > 10°C (50°F - Muck, 1982, Elzing & Monteny, 1997)

Ammonia dissociation

$$NH_4^+ - NH_3 + H^+$$

$$NH_3 + H_2O - NH_4^+ + OH^-$$

Processes involved in ammonia volatilization from dairy manure

- ₹ NH₃/NH₄⁺ reaction tends to NH₃ with increase in:
 - —Temperature (Muck and Steenhuis, 1981, Muck, 1982);
 - —pH (Muck and Steenhuis, 1981, Muck, 1982);
 - $-NH_4^+$ concentration (Hashimoto, 1972);
 - —Wind speed (Monteny and Erisman, 1998).
- ₹ May reduce volatilization:
 - —Floating layers (Voorburg and Kroodsma, 1992).

¥ Introduction:

¥ Objective:

—To develop a regression to predict N split between urine and feces based on simple information.

* Literature review:

- —56 experiments, 231 different treatments, 3751 cows.
- —Literature up to 11 years old (1990-2001).

—Information obtained:

```
¥# cows
```

¥ Breed

¥ BW (kg)

¥ Lactation

¥ DIM

₹ Type of Exp.

¥ Form of diet

¥ Main Forage

Y Method of preservation

¥ # feedings

₹ %Forage

Y CP (%DM)

₹ RUP (%CP)

₹ TDN (%DM)

¥ NDF (%DM)

¥ NFC (%DM)

 Y
 DMI (kg/d)

 Y
 Milk (kg/d)

Y NI (kg/d) measured

¥ Milk CP (%)

Y Milk N (kg/d)

Y Manure N

¥ Fecal N

Y Urinary N

YNR (kg/d) measured

—Calculations

- NI (kg/d) calculated
- Fecal N (%DMI)
- Fecal N (%NI)
- Estimated Fecal N (Peyraud et al., 1995 7.5g/kgDMI)
- Estimated Fecal N (Van Soest, 1994
 —0.6%DMI)
- Estimated Fecal N (Average, 2001 0.93%DMI)
- Urinary N (%DMI)
- Urinary N (%NI)

- Urine N, %manure N
- (NI-MN-FN) kg/d
- UN+RN (NI-MN-FN) kg/d
- * RN (NI-MN-FN-UN) kg/d
- Manure N (NI-MN) kg/d
- DMI (%BW)
- NI (%BW)
- NDFI (kg/d)
- DMI-CPI-NDFI
- N efficiency

* Experimental and dietary information

	Average	Stdev
# feeding	2.50	2.20
%Forage	57	16
CP (%DM)	16.8	2.50
RUP (% CP)*	33.0	6.2
TDN (%DM)*	70.6	5.80
NDF (%DM)	38.3	6.50
NFC (%DM)*	41.4	7.80

^{*} Estimated based on book values of dietary ingredients.

¥ Production and excretion information

	Avg (kg/d)	Stdev	Avg (lb/d)
DMI	18.0	4.80	39.6
Milk	28.5	7.20	62.8
NI	0.495	0.162	1.09
Milk CP (%)	3.11	0.220	
Milk N	0.137	0.034	0.302
Manure N	0.342	0.114	0.753
Fecal N	0.166	0.058	0.366
Urinary N	0.176	0.068	0.388
NR	0.029	0.035	0.063

* Estimating fecal N:

		Average	stdev
	Fecal N (%DMI)	0.914	0.174
	Fecal N (%NI)	33.4	6.01
Peyraud et	Fecal N (kg/d)	0.141	0.036
al., 1995	% error	14.7	18.0
Van Soest,	Fecal N (kg/d)	0.113	0.028
1994	% error	31.7	14.4
Average,	Fecal N (kg/d)	0.172	0.043
2001	% error	-3.99	22.0

What techniques can be used to estimate N losses?

Methods for estimating nitrogen losses

¥ Direct measurements:

- —Continuous measurement:
 - ¥ Non Dispersive Infra Red (NDIR);
 - ₹ Open-Path Fourier Transform Infrared (OP-FTIR);
 - ¥ Optical absorption techniques
 - ¥ Fluorescence methods;
 - ¥ Gas chromatography;
 - ¥ Electrochemical cells;
 - ¥ NO monitor in combination with a high temperature catalyst stainless steel (chemiluminescence detectors);
 - ¥ Continuous flow denuder.

Methods for estimating nitrogen losses

¥ Direct measurements:

- —Discontinuous measurement:
 - ¥ Acid scrubbers;
 - ¥ Gas detection tubes;
 - ¥ Passive diffusion devices;
 - ¥ Denuders.
- * Product of air exchange rate and the difference between inflow and outflow NH₃ concentrations.

Methods for estimating nitrogen losses

¥ Indirect estimations:

- —Mass balances (N Inputs minus N outputs van der Meer, 2001);
- —N:ash (Muck and Richards, 1983, Muck et al, 1984);
- -N:P.
- * Do not discriminate among N form (NH₃, NH₄⁺, N₂O or N₂);
- * Not real-time.

Sources of ammonia volatilization

Opportunities for losses

₹ Cattle housing system

```
—Floor barn
```

₹ Tie-stall;

¥ Free-stall:

—Slatted floor;

—Solid floor;

—Storage

¥ Daily haul;

¥ Earthen basin or concrete pit;

¥ Bedded pack;

¥ Stack.

Moreira, V.R., Santos, H.H.B., Satter, L.D.

- ¥ Introduction
- **¥** Objectives
 - —To evaluate the use of N to P ratio for estimating N disappearance from manure;
 - —To determine N disappearance from tie-stall and free-stall.

¥ Materials and methods

	Tie-stall	Free-stall
Dates	Feb 9-10 th 2001	Feb 9-10 th 2001
# Groups	2	2
# Cows	8	~96
Diets	1	2 (P = .38 & .48%DM)
DMI	Individually	Average
MY	Individually	Individually
# scraping per day	2	6-10
Sampling	2x (4:40am & 3:00pm)	3x (7:00pm; 1:00am; 9:00am)

Y Materials and Methods

¥ Results

—Manure temperature (°C) and pH:

Tie-Stall		Group 1 & 2	_
T1 = 4:40AM	pН	7.98	
	Temp	14.9	
T2 = 3:00PM	pН	7.56	
12 - 3.001 W	Temp	14.5	<u>-</u>
Free-Stall		Pen 5 + 6	Pen 7 + 8
T1=7:00PM	pН	8.61	8.04
	Temp	7.90	8.25
T2=1:00AM	pН	8.15	8.17
	Temp	6.50	7.10
T3=9:00AM	pН	7.97	7.78
	Temp	5.85	6.40

¥ Results

—TN and TP:

	TN (%Wet)	P (%Wet)
Free stall - Pen 5-6	0.455	0.051
Free stall - Pen 7-8	0.464	0.070
Tie stall - Diet UN	0.502	0.042

Free-stall

Tie-stall

Freeze Drying TN Protocol

- **Y** Introduction
- ₹ Objective
 - —To evaluate the freeze drying process on the recovery of manurial total nitrogen.
- **Y** Materials and Methods
 - —2x2x3 factorial design:
 - ¥ With or without acidification (2mL 67%H₂SO₄/90mL manure);
 - ¥ Three levels of ammonium sulfate (0, 3 or 6g/~90mL manure);
 - ¥ Analyzed fresh or after lyophilization
 - —5 replications/treatment.

TN Protocol

¥ Results

TN (%FD DM)

Sample/acid/Ammonium sulfate

TN Protocol

¥ Results

Effect of lyofilization and acidification manure samples on total nitrogen recovery (TN):

Sample	Fresh				Lyofilized					
Sulfuric acid		+			+		. <u> </u>	-		
$g (NH_4)_2SO_4$		3	6	0		6	0		SEM	
TN (%FD DM)	2.91 ^d	5.52°	6.94 ^b	3.00^{d}	5.69°	7.71 ^a	$2.40^{\rm e}$	7.06^{b}	0.13	0.001
(Rep) CV (%)	9.04	8.17	8.80	5.66	3.00	2.05	2.15	2.11		
Rep CV (%)	4.39	3.55	5.14	6.85	1.56	4.88	4.34	2.39		

¥ Introduction

¥ Objective

—To estimate N disappearance from dairy manure from excretion until storage is emptied using P as a marker (N to P ratio).

Y Materials and methods

- —13 farms were selected;
- —Samples collected:
 - ¥ Manure samples: collected throughout emptying of storage facility;
 - ¥ Feed samples;
 - ¥ Sampling period: March 27th through May 29th 2001

¥ Materials and methods

—Information:

```
¥ Housing (type and management);
```

¥ Milk records and diet composition (N and P);

₹ Manure storage (type and management);

¥ Hauling schedule.

¥ Materials and methods

- —Sample processing was similar to that of Validation Protocol;
- —TN analyses were done in half of the subsamples that were lyophilized.

¥ Results

	pН	T (°C)	DM (%)	TN (%DM)	Ash (%DM)	P (%DM)	N:P
Overall avg	7.31	14.98	12.28	3.33	36.7	0.63	5.54
Sand bedding	7.40	15.6	15.2	2.79	51.2	0.47	5.91
Sawdust bedding	7.19	14.1	8.73	3.99	19.2	0.81	5.09
Stdev	0.48	5.30	4.38	0.82	17.4	0.21	0.82
CV	6.58	35.4	35.7	24.6	47.4	33.5	14.9
Max	8.52	23.7	19.8	4.34	58.3	0.92	6.49
Min	6.85	6.34	6.73	1.74	17.1	0.36	4.03

¥ Limitations

Farm	2	3	4	5	6	7	8	9Lact	9Dry	10	11	12	13	Avg	Stdev	cv
Cows																
BW (kg)	635.6	?	635.6	568.2	648.2			635.6	635.6	635.6	591.6			623.3	27.8	4.5
DMI (kg)	25.4	?	24.9	24.9	28.2			23.6	28.8	25.8	24.5			25.8	1.8	7.0
DIM	154	?	154	154	154			132	0	154	154			132	54	40.8
MY (kg)	35.4	?	34.1	35.8	42.2			29.9	0.0	36.3	35.9			31.2	13.0	41.8
Milk CP (%)	3.15	?	3.15	3.15	3.15			3.15	0.00	3.15	3.15			2.76	1.11	40.4
Milk P (%)	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.00	0.09	0.09	0.09	0.09	80.0	0.02	30.0
Diet																
TN (%DM)	2.78	?	2.98	2.84	2.59			2.81	2.29	2.76	2.20			2.65	0.28	10.4
TP (%DM)	0.48	?	0.45	0.44	0.41			0.38	0.36	0.41	0.40			0.42	0.04	9.16
Excretion																
TN (g)	0.531		0.574	0.531	0.522	0.000	0.000	0.514	0.658	0.531	0.362	0.000	0.000	0.352	0.268	76.2
TP (g)	0.090		0.081	0.078	0.078	0.000	0.000	0.064	0.104	0.072	0.066	0.000	0.000	0.053	0.040	76.5
N/P	5.89		7.05	6.80	6.72	#DIV/0!	#DIV/0!	8.08	6.30	7.40	5.49	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
							•	7.8		-						
Manure																
TN (%DM)	3.31	6.30	2.88	4.34	3.65	3.53	4.16	2.65		2.51	4.28	1.74	3.63	3.58	1.16	32.4
TP (%DM)	0.564	0.861	0.521	0.814	0.586	0.871	0.883	0.400		0.394	0.919	0.359	0.575	0.645	0.212	32.8
N:P	5.76	7.42	5.39	5.51	6.45	3.99	4.83	6.49		6.20	4.65	5.13	6.44	5.69	0.96	16.9
% N loss	2.1	#DIV/0!	23.5	19.0	4.0	#DIV/0!	#DIV/0!	16.9		16.2	15.4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

	Farms							
	2	4	5	6	9	10	11	
N losses (%excreted N)	2.1	23.5	19.0	4.0	16.9	16.2	15.4	

- ¥ Introduction
- **₹** Objective
 - Estimate N disappearance from dairy manure based on N to P ratio, according to analyses done in commercial laboratories.

¥ Materials and Methods

- —230 dairy manure analyses from three commercial laboratories located in Pennsylvania, Ohio and Wisconsin;
- Analyses: Total Nitrogen and Total Phosphorus.

¥ Results

Effect of manure storage structure on Total Nitrogen (TN), Total Phosphorus (P) and N to P ratio (N/P) (3 Labs: Pennsylvania, Ohio and Wisconsin)

							P<	
%DM	BP ⁽¹⁾	DH ⁽²⁾	EB (3)	S (4)	SEM	BP vs.	DH vs.	S vs.
						EB	EB	EB
TN	2.41	2.9	4.25	2.73	0.35	<.001	<.001	0.02
P	0.560	0.550	0.790	0.540	0.060	0.001	<.001	0.02
N/P	4.84	5.73	5.56	5.41	0.42	0.16	0.58	0.86

 $^{^{1}}$ BP = bedded pack (n=19).

 $^{^{2}}$ DH = daily haul (n=68).

 $^{^{3}}$ EB = earthen basins (n=136).

 $^{^{4}}$ S = stack (n=7).

¥ Results

Effect of season¹ on Total Nitrogen (TN), Total Phosphorus (P) and N to P ratio (N/P) of 130 dairy manure analyses (2 labs: Minnesota and Wisconsin), regardless waste storage structure.

					<u>P ≤</u>						
	Summer ²	Winter ³	Fall ⁴	Spring ⁵	SEM	Fall	Fall	Fall	Spring	Summer	Winter
	Summer	vv inter	I all	Spring	DEIVI	VS.	VS.	VS.	VS.	VS.	VS.
						Spring	Summer	Winter	Summer	Winter	Spring
TN	4.3	3.84	4.03	3.17	0.48	0.07	0.7	0.79	0.11	0.6	0.34
P	0.807	0.701	0.756	0.508	0.080	0.003	0.68	0.66	0.02	0.49	0.12
N/P	5.42	5.53	5.72	6.45	0.53	0.17	0.7	0.81	0.18	0.91	0.24

¹ Seasons were arranged based on the dates of manure analyses.

 $^{^{2}}$ n=15

 $^{^{3}}$ n=25

 $^{^{4}}$ n=36

⁵ n=54

SUMMARY

N factors presented in the literature:

	Location	Excretion
ASAE (2001)	USA	105kg/yr
EMEP (1999)	Europe	100kg/cow/yr
Hutchings et al. (2001)	Denmark	125kg/cow/yr
Jarvis et al. (1987)	UK	75-89%NI
MWPS-18	USA	136kg/cow/yr
Powers and Van Horn (2001)	USA	77.1%NI
van der Putten and Ketelaars (1997)	The Netherlands	77.1%NI
Average		78.7%NI or 116kg/cow/yr
Our results		69.1%NI (125kg/cow/yr)

N Excretion

	% N entering	Logation		Housing	<u> </u>	Stowago
	the system	Location	Summer		Overall	Storage
	Bussink and Oenema (1998)		up to 70	2-10		0-20
	EMEP (1999)	Europe			12	6
Housing	Hutchings et al. (2001)	Denmark			2-15 (6)	5
and	Muck et al. (1984)	USA				3-39
Storage	Safley et al. (1986)	USA				22.6 (from excretion)
	Sommer and Hutchings (1997)	Denmark				5
	van der Putten and Ketelaars (1997)	The Netherlands		13		
	Average		35	9.50	9.00	8.80
	Our results			2.00-12.5 (7.25)		4-23.5 (19.8)
						U.

% N entering the system	Location	Grazing	Broadcast	Band spreader	Spreading Injection with open slits	Injection	Overall
Bussink and Oenema (1998)		0-28				0-5	up to 100 (TAN)
Chadwick et al. (2000)	UK			39 (TAN)	75 (TAN)	83 (TAN)	
EMEP (1999)	Europe	8					20
Hutchings et al. (2001)	Denmark	7	7-30	2-25		2	6
Jarvis et al. (1987)	UK	20-40					45-73
Sommer and Hutchings (1997)	Denmark	10-50 (TAN)					20-86
van der Putten and Ketelaars (1997)	The Netherlands	13 (3.5- 34.6)		5-15	<5	1	
Average		17	18.5	7.8	5.00	1.83	34.5

116.0 kg N excreted/year

USDFRC

Validation Protocol

¥ Overall status:

- —Limitations:
 - * Assumed equal proportions of urine and feces for front and back free-stall;
 - * Day to day variation in excretion rates, mainly for tie-stall sampling;

—Perspective:

- * Correct urine: feces excretion ratio, according to DM or P, for free-stall sampling mix all???
- ¥ Tie-stall: repeated protocol in Summer for two days.

In Stall Scraping

- **¥** Introduction
- **₹** Objective
 - —To evaluate the effect of scraping frequency on N disappearance, as estimated by N to P ratio.
- **¥** Materials and Methods
 - —Scrapers were set up for 2 or 6-times a day;
 - —Cross-over design, two sides of free stall;
 - —Sampling protocol followed that presented for Validation Protocol.

FARM #: 0 Farm name: Farm owner (s): **Contact phone:** Type of animal facility: **Animal categories:** Milk yield records: **Nutrition consultant: Diet composition:** MANURE MANAGEMENT Scraping schedule (system and # of scrap ings/day): **Intermediat e facility schedule (manure pit or other): Manure facility (type, management): OBS**: Hauling schedule (time of loads; # of loads): **Period filling (date of last hauling): Equipment (type, size, # loads/day):**

¥ Results

Effect of type of bedding on Total Nitrogen (TN), Total Phosphorus (P) and N to P ratio (N/P) of 130 dairy manure analyses (2 Labs: Minnesota and Wisconsin), regardless of storage type.

%DM	Inorganic ¹	Organic ²	SEM	$P \leq$
TN	3.22	3.88	0.19	0.02
P	0.584	0.713	0.035	0.01
N/P	5.84	5.73	0.24	0.73

¹ Manure samples with accompanying information indicating that sand or no bedding was used. This also included samples where there was no information about bedding (n=56).

² Manure samples with accompanying information indicating that straw, hay, grass, sawdust, shaving or oat hulls (n=74).

¥ Results

Effect of wall profile of manure storage on Total Nitrogen (TN), Total Phosphorus (P) and N to P ratio (N/P) of 99 dairy manure samples (3 labs: Pennsylvania, Ohio and Wisconsin).

%DM	Inclined ¹	Vertical ²	SEM	$P \leq$
TN	4.18	5.33	0.36	0.04
P	0.765	0.866	0.06	0.3
N/P	5.79	6.24	0.36	0.41

 $^{^{1}}$ n=86

 $^{^{2}}$ n=13

¥ Results

Effect of loading (bottom or top) of manure into the storage on Total Nitrogen (TN), Total Phosphorus (P) and N to P ratio (N/P) of 63 dairy manure samples (1 lab: Pennsylvania).

%DM	Bottom	Top	SEM	$P \leq$
TN	4.91	3.93	0.42	0.11
P	0.917	0.805	0.05	0.12
N/P	5.36	4.90	0.31	0.30

 $^{^{1}}$ n=21

 $^{^{2}}$ n=42

¥ Results

Effect of covering the manure storage on Total Nitrogen (TN), Total Phosphorus (P) and N to P ratio (N/P) of 36 dairy manure (1 lab: Pennsylvania).

%DM	Covered	Uncover	SEM	<i>P</i> <
TN	5.58	4.36	0.65	0.21
P	0.872	0.830	0.070	0.69
N/P	6.12	5.38	0.44	0.25

 $^{^{1}}$ n=11

 $^{^{2}}$ n=25

Procedures

¥ Freeze Drying TN Protocol

¥ Sampling Protocol

